play_arrowdatasetViewer.description
The dew point or dew temperature is the highest temperature at which the water vapor contained in the air begins to condense, producing dew, mist, any type of cloud or, if the temperature is low enough, Frost. This is one of the variables recorded by the meteorological network of the Chilean Meteorological Directorate (DMC). This collection contains the information stored by 321 stations that have recorded, at some point, the dew point since 1950, spaced every hour. It is important to note that not all stations are currently operational.
The data is updated directly from the DMC's web services and can be viewed in the Data Series viewer of the Itrend Data Platform.
In addition, a historical database is provided in .npz* and .mat** format that is updated every 30 days for those stations that are still valid.
*To load the data correctly in Python it is recommended to use the following code:
```python
import numpy as np
with np.load(filename, allow_pickle = True) as f:
data = {}
for key, value in f.items():
data[key] = value.item()
```
**Date data is in ```datenum``` format, and to load it correctly in ```datetime``` format, it is recommended to use the following command in MATLAB:
```python
datetime(TS.x , 'ConvertFrom' , 'datenum')
```
play_arrowdatasetViewer.preview
datasetViewer.previewCollectionInfo
Código Nacional | Nombre Estación | Comuna | Región | Latitud | Longitud | Organismo | Datos Desde | Datos |
---|
170001 | Visviri Tenencia | General Lagos | Arica y Parinacota | -17.594999 | -69.477499 | Dirección Meteorológica de Chile | 2013 | 2020 |
170007 | Visviri INIA | General Lagos | Arica y Parinacota | -17.594721 | -69.475277 | Instituto de Investigación Agropecuaria | 2019 | 2023 |
180005 | Chacalluta, Arica Ap. | Arica | Arica y Parinacota | -18.355555 | -70.340277 | Dirección Meteorológica de Chile | 1957 | 2023 |
180013 | El Buitre Arica Ad. | Arica | Arica y Parinacota | -18.508611 | -70.287221 | Dirección Meteorológica de Chile | 1952 | 1973 |
180017 | Putre | Putre | Arica y Parinacota | -18.2 | -69.5625 | Dirección Meteorológica de Chile | 2017 | 2023 |
··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· | ··· |
950001 | C.M.A. Eduardo Frei Montalva, Antártica | Antártica | Magallanes y de la Antártica Chilena | -62.191944 | -58.979721 | Dirección Meteorológica de Chile | 1972 | 2023 |
950002 | Arturo Prat, Base Antártica | Antártica | Magallanes y de la Antártica Chilena | -62.47861 | -59.664166 | Armada de Chile | 1959 | 2023 |
950003 | Bernardo O`Higgins, Base Antártica | Antártica | Magallanes y de la Antártica Chilena | -63.320832 | -57.899444 | Dirección Meteorológica de Chile | 1956 | 2023 |
950006 | Antártica, Bahía Fildes Gobernación Marítima | Antártica | Magallanes y de la Antártica Chilena | -62.201388 | -58.963611 | Armada de Chile | 2017 | 2023 |
950901 | Antártica, Base Gabriel Gonzalez Videla | Antártica | Magallanes y de la Antártica Chilena | -64.824166 | -62.858055 | Armada de Chile | 2017 | 2023 |
play_arrowdatasetViewer.download
datasetViewer.download1 datasetViewer.here. datasetViewer.download3
play_arrowdatasetViewer.programaticAccess
datasetViewer.programaticAccess1 itrend-ds:04dd2dbce2e4a9fd
datasetViewer.programaticAccess2 Código Nacional
datasetViewer.programaticAccess3 datasetViewer.programaticAccess4 datasetViewer.programaticAccess5 datasetViewer.here
```python
import pytrend
import pandas as pd
session = pytrend.itrend_developer_tools()
session.set_credentials(
access_key_id = '', # Type your access_key_id
secret_access_key = '' # Type your secret_access_key
)
# Dataset
dataset_id = 'itrend-ds:04dd2dbce2e4a9fd'
collection_id = 'Código Nacional'
# Get available formats
dataset_formats = session.get_dataset_formats(dataset_id)
fmt = dataset_formats[0] # Choose your preferred format: dataset_formats = [xlsx, csv]
# Download file
response = session.download_file(dataset_id, fmt)
# Download an element
filename = response.get('filename')
delimiter = response.get('delimiter')
df = pd.read_csv(filename, delimiter)
element_formats = session.get_element_formats(dataset_id)
efmt = element_formats[0] # Choose your preferred format: element_formats = [npz, mat]
for r, row in df.iterrows():
element_id = row[collection_id]
element_response = session.download_file(dataset_id, efmt, element_id)
break
```
play_arrowdatasetViewer.attribution
datasetViewer.attributionMessage1
datasetViewer.attribution1 Meteorological Directorate of Chile, «Historical dew point measurements from the DMC network». datasetViewer.attribution2
file_copy
datasetViewer.attributionMessage2
datasetViewer.attribution3 Meteorological Directorate of Chile («Historical dew point measurements from the DMC network»), datasetViewer.attribution4
file_copy
play_arrowdatasetViewer.permanentLink
datasetViewer.permanentLinkDescription
https://www.plataformadedatos.cl/datasets/en/04dd2dbce2e4a9fd
file_copy
play_arrowdatasetViewer.metadata
datasetViewer.noMetadata