Colection of finite fault models from the USGS

United States Geological Survey

datasetViewer.description

The United States Geological Survey (USGS) has generated a set of finite fault models for several earthquakes around the world. In this collection, we have collected those models with a earthquake magnitude bigger than 6 in an area that covers Chile. Each event has been identified with the unique code given by the institution. All the models contains the geometry and typical properties of a finite fault model. Last update: August 22, 2022

datasetViewer.preview

datasetViewer.previewCollectionInfo

IDUbicaciónMagnitudTipo de magnitudFechaLatitudLongitudProfundidad [km]
us7000bfjr86 km NW of Vallenar, Chile6.8mww2020-09-01 04:09:28.470-27.9686-71.306221
us10008kce40 km W of Valparaíso, Chile6.9mww2017-04-24 21:38:30.820-33.0375-72.061728.0
us10007mn341 km SW of Quellón, Chile7.6mww2016-12-25 14:22:27.010-43.4064-73.941338.0
us20003k7a48 km W of Illapel, Chile8.3mww2015-09-16 22:54:32.860-31.5729-71.674422.44
usc000p27i53 km SW of Iquique, Chile7.7mww2014-04-03 02:43:13.110-20.5709-70.493122.4
························
official20100227063411530_3036 km WNW of Quirihue, Chile8.8mww2010-02-27 06:34:11.530-36.122-72.89822.9
usp000fshy36 km ESE of Tocopilla, Chile7.7mwc2007-11-14 15:40:50.530-22.247-69.8940.0
usp000dsw1102 km ENE of Iquique, Chile7.8mwb2005-06-13 22:44:33.900-19.987-69.197115.6
usp000aj4051 km SW of Punta de Bombón, Peru7.6mwc2001-07-07 09:38:43.520-17.543-72.07733.0
usp000714t36 km NNE of Antofagasta, Chile8.0mw1995-07-30 05:11:23.630-23.34-70.29445.6

datasetViewer.spatialCoverage

datasetViewer.spatialCoverageInfo datasetViewer.mapView

datasetViewer.download

datasetViewer.download1 datasetViewer.here. datasetViewer.download3

datasetViewer.programaticAccess

datasetViewer.programaticAccess1 itrend-ds:472AE6E9AD343E6

datasetViewer.programaticAccess2 ID

datasetViewer.programaticAccess3 datasetViewer.programaticAccess4 datasetViewer.programaticAccess5 datasetViewer.here

```python import pytrend import pandas as pd session = pytrend.itrend_developer_tools() session.set_credentials( access_key_id = '', # Type your access_key_id secret_access_key = '' # Type your secret_access_key ) # Dataset dataset_id = 'itrend-ds:472AE6E9AD343E6' collection_id = 'ID' # Get available formats dataset_formats = session.get_dataset_formats(dataset_id) fmt = dataset_formats[0] # Choose your preferred format: dataset_formats = [csv, xlsx, geojson, shp] # Download file response = session.download_file(dataset_id, fmt) # Download an element filename = response.get('filename') delimiter = response.get('delimiter') df = pd.read_csv(filename, delimiter) element_formats = session.get_element_formats(dataset_id) efmt = element_formats[0] # Choose your preferred format: element_formats = [geojson, png, kml, kmz, shp] for r, row in df.iterrows(): element_id = row[collection_id] element_response = session.download_file(dataset_id, efmt, element_id) break ```

datasetViewer.attribution

datasetViewer.attributionMessage1

datasetViewer.attribution1 United States Geological Survey, «Colection of finite fault models from the USGS». datasetViewer.attribution2

datasetViewer.attributionMessage2

datasetViewer.attribution3 United States Geological Survey («Colection of finite fault models from the USGS»), datasetViewer.attribution4

datasetViewer.permanentLink

datasetViewer.permanentLinkDescription

https://www.plataformadedatos.cl/datasets/en/472AE6E9AD343E6

datasetViewer.metadata

datasetViewer.noMetadata